

MARCELA-CORINA ROSU¹, CRINA SOCACI¹, ALIN-SEBASTIAN PORAV¹, ALEXANDRU TURZA¹, LAURA CHIRILA², CARMEN GAIDAU², DANIEL TIMPU³, ALICE-ORTANSA MATEESCU⁴, IOANA-RODICA STANCULESCU⁴

National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania, email: marcela.rosu@itim-cj.ro ² National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508, sector 3, Bucharest, Romania, email: chirila_laura@yahoo.com ³"Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania, email: dtimpu@iccpp.ro

⁴ "Horia Hulubei" National Institute for Research and Development in Physics and Nuclear Engineering, 30 Reactorului Street, 077125, Magurele, Romania, email: amateescu@niham.nipne.ro

INTRODUCTION

INCDTIM

Treatment of fabrics with various additives (organic/inorganic nano-structured materials) shows a growing interest for domestic and industrial use due to self-cleaning, antimicrobial and anti-pollution

characteristics. Nano-modified fabrics using photocatalytic materials have a vast potential for the development of new products from selfcleaning fabrics for consumer to filter membranes for separation field and/or photocatalytic degradation of various dyes from wastewater. TiO₂based materials are a reliable choice to provide photocatalytic properties considering the special properties of TiO₂ (i.e., chemical and photo stability, non-toxicity, lower cost, etc.).

EXPERIMENTAL

Preparation of composite-treated cotton gauzes

The composite powders (TiO₂-Ag and TiO₂-Ag/RGO) were dispersed into a 2% aqueous solution of sodium alginate (8 mg/ml) and were sonicated for 15 min. The cotton gauze specimens (2cm x 3cm 6-fold 1 sheets) were impregnated with these two prepared dispersions (4 ml/each piece of cotton gauze). Thereafter, the specimens were immersed in 4% CaCl, aqueous solution for cross-linking and thus, obtaining insoluble Ca-alginate with TiO, immobilized on them. After one day, all gauze cotton specimens were removed from CaCl₂ aqueous solution and were dried at 25°C in an oven for 24 h. The resulting materials were denoted as CaAlg/TiO₂-Ag/CG and CaAlg/TiO₂-Ag/RGO/CG. A cotton gauze specimen impregnated with calcium alginate matrix without composites was prepared as control specimen (CaAlg/CG).

Cotton gauze specimens: a) CG; b) CaAlg/CG; c) CaAlg/TiO₂-Ag/CG; d) CaAlg/TiO₂-Ag/RGO/CG

Characterization of composite-treated cotton gauzes

A) X-ray diffraction profiles ; B) SEM images; C) FTIR spectra of CaAlg/TiO₂-Ag/CG and CaAlg/TiO₂-Ag/RGO/CG.

Photocatalytic analysis of composite-treated cotton gauzes

The photocatalytic behavior of the composite-treated cotton gauzes was evaluated by photodegradation of amaranth dye solution under sun light exposure.

100 -		
90 -	AM 2x10 ⁻⁵ M solution	

CONCLUSION

The TiO₂-Ag and TiO₂-Ag/RGO-treated cotton gauzes impregnated in calcium alginate matrix have been prepared to compare their photodegradation efficiencies. The photodegradation of amaranth dye over TiO₂based composite treated cotton gauzes is improved under exposure of sun light. This result highlights the potential of obtained composites to use in the development of self-cleaning photocatalytic cotton fabrics. Further experimental studies will be considered in order to determine the optimum conditions for maximizing amaranth dye degradation using the TiO_2 -Ag/RGO based composites.

Acknowledgments:

This work was supported by a grant of Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, Project number PN-III-P1-1.2-PCCDI-2017-0743/44PCCDI/2018, within PNCD III. The SEM investigation was supported using the infrastructure obtained in the project Research Center and Advanced Technologies for Alternative Energies - CETATEA - 623/11.03.2014.